

Neutrino Mass, Inflation, and Dark Energy with the CMB

Prof. Neelima Sehgal Stony Brook University

DOE Cosmic Visions Dark Energy Oct. 1st, 2015

• Intro to ACTPol, AdvACT, CMB-S4

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing
- CMB Halo Lensing/CMB Lensing Cross-Correlations as Probes of Dark Energy

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing
- CMB Halo Lensing/CMB Lensing Cross-Correlations as Probes of Dark Energy
- Conclusion

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing
- CMB Halo Lensing/CMB Lensing Cross-Correlations as Probes of Dark Energy
- Conclusion

ACTPol / AdvACT

ACTPol / AdvACT

ACTPol / AdvACT

ACTpol - Observes from 2013 - 2015

ACTpol - Observes from 2013 - 2015 4000 sq deg (10% of sky)

```
ACTpol - Observes from 2013 - 2015
4000 sq deg (10% of sky)
4 x better sensitivity than Planck
```

```
ACTpol - Observes from 2013 - 2015
4000 sq deg (10% of sky)
4 x better sensitivity than Planck
5 x better resolution than Planck
```

ACTpol - Observes from 2013 - 2015 4000 sq deg (10% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

AdvACTpol - 2016 - 2018

ACTpol - Observes from 2013 - 2015 4000 sq deg (10% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

AdvACTpol - 2016 - 2018 20,000 sq deg (50% of sky)

ACTpol - Observes from 2013 - 2015 4000 sq deg (10% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

AdvACTpol - 2016 - 2018 20,000 sq deg (50% of sky) 4 x better sensitivity than Planck

ACTpol - Observes from 2013 - 2015 4000 sq deg (10% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

AdvACTpol - 2016 - 2018

20,000 sq deg (50% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

ACTpol - Observes from 2013 - 2015 4000 sq deg (10% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

AdvACTpol - 2016 - 2018

20,000 sq deg (50% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

AdvACT funded by NSF MSIP in June 2015

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

Report of the Particle Physics Project Prioritization Panel (P5)

	Scenarios				Science Drivers					
Project/Activity	Scenario A	Scenario B	Scenario C	Higgs	Neutrinos	Dark Matter	Cosm. Accel.	The Unknown	Technique (Frontier)	
Large Projects										
Muon program: Mu2e, Muon g-2	Y, Mu2e small reprofile needed	Y	Y					~	ı	
HL-LHC	Y	Y	Y	~		1		~	Ε	
LBNF + PIP-II	Y, delayed relative to Scenario B.	Υ	Y, enhanced		1			1	I,C	
ILC	R&D only	R&D, possibly small handware contri- butions. See text.	Y	~		1		1	Ε	
NuSTORM	N	N	N		~				ı	
RADAR	N	N	N		~				ı	
Medium Projects										
LSST	Y	Y	Y		/		1		С	
DM G2	Y	Y	Y			1			С	
Small Projects Portfolio	Y	Υ	Y		~	~	~	~	All	
Accelerator R&D and Test Facilities	Y, reduced	Y, redirection to PIP-II development	Y, enhanced	~	~	~		~	E,I	
CMB-S4	Y	Y	Y		~		1		С	

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

Report of the Particle Physics Project Prioritization Panel (P5)

	Scenarios			Science Drivers					
Project/Activity	Scenario A	Scenario B	Scenario C	Higgs	Neutrinos	Dark Matter	Cosm. Accel.	The Unknown	Technique (Frontier)
Large Projects									
Muon program: Mu2e, Muon g-2	Y, Mu2e small reprofile	Y	Y					~	1
HL-LHC	Υ	Υ	Y	~		1		1	Е
LBNF + PIP-II	Y, delayed relative to Scenario B.	Υ	Y, enhanced		/			1	I,C
ILC	R&D only	R&D, possibly small hardware contri- butions. See text.	Υ	~		1		1	Ε
NuSTORM	N	N	N		~				1
RADAR	N	N	N		~				1
Medium Projects									
LSST	Υ	Y	Υ		~		1		С
DM G2	Y	Y	Y			~			С
Small Projects Portfolio	Υ	Y	Υ		~	~	~	1	All
Accelerator R&D and Test Facilities	Y, reduced	y redirection to	Y, enhanced	1	~	~		~	E,I
CMB-S4	Y	Y	Y		~		~		С

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing
- CMB Halo Lensing/CMB Lensing Cross-Correlations as Probes of Dark Energy
- Conclusion

Unlensed CMB

Lensed CMB

Measurements of CMB Lensing on Large Scales

Planck Paper 15, 2015 (1502.01591)

Measurements of CMB Lensing on Large Scales

Planck Paper 15, 2015 (1502.01591)

Blanchard & Schneider 1987 (first idea of detectability)

Zaldarriaga & Seljak 1997 (first lensing estimators)

Hu 2001 Hu & Okamoto 2002 (optimal lensing estimators)

Smith, Zahn, Dore 2007 (first indirect detection)

Das et al. 2011 - ACT (first direct detection)

van Engelen et al. 2012 - SPT (second direct detection)

Planck Collaboration 2013 (detection with S/N = 25)

Planck Collaboration 2015 (detection with S/N = 40)

CMB Lensing Power Spectrum Sensitive to Neutrino Mass

Figure credit: A. van Engelen

Data Set	f_{sky}	Map noise (μK-arcmin)	$\sigma(\sum m_{\nu}) \text{ (eV)}$	$\sigma(\sum m_{\nu}) \text{ (eV)}$
		at 150 GHz	CMB alone	with BAO
Planck	0.8	43	0.20	0.12
ACTPol	0.1	20	0.09	0.06
AdvACT	0.5	7	0.06	0.04

CMB-S4 Forecasts

Allison et al., 1509.07471, 2015

CMB-S4 Forecasts

Allison et al., 1509.07471, 2015

Outline

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing
- CMB Halo Lensing/CMB Lensing Cross-Correlations as Probes of Dark Energy
- Conclusion

$$T^{L}(\hat{n}) = T^{U}(\hat{n} + \nabla \phi(\hat{n}))$$

$$T^L(\hat{n}) = T^U(\hat{n} + \underline{\nabla \phi(\hat{n})})$$
 Deflection angle

 Delensing = undo the lensing of the primordial CMB due to Large-scale structure (LSS)

Shift pixels backward using LSS map to reconstruct unlensed CMB

 Delensing = undo the lensing of the primordial CMB due to Large-scale structure (LSS)

Shift pixels backward using LSS map to reconstruct unlensed CMB

 Need template of LSS from either internal CMB lens map reconstruction and/or LSS tracer like CIB (see e.g. Sherwin & Schmittfull, 2015, 1502.05356)

Want to measure the amplitude (r) and scale dependence (n_T) of primordial B-mode power

Simard, Hanson, Holder 2014, 1410.0691

Want to measure the amplitude (r) and scale dependence (n_T) of primordial B-mode power

 $n_T = -r/8$ is consistency relation of single-field, slow roll inflation

Simard, Hanson, Holder 2014, 1410.0691

Want to measure the amplitude (r) and scale dependence (n_T) of primordial B-mode power

 $n_T = -r/8$ is consistency relation of single-field, slow roll inflation

B-modes from gravitational lensing are a contaminant

Simard, Hanson, Holder 2014, 1410.0691

Error on r proportional to B-mode lens power

Error on r proportional to B-mode lens power

$$\sigma(r) \propto \sum_{l} \sqrt{\frac{2}{(2l+1)f_{\rm sky}}} (C_l^{\rm BB,lens} + N_l^{\rm BB})$$

Error on r proportional to B-mode lens power

$$\sigma(r) \propto \sum_{l} \sqrt{\frac{2}{(2l+1)f_{\rm sky}}} (C_l^{\rm BB,lens} + N_l^{\rm BB})$$

 With map of LSS and CMB E-mode map, can estimate CMB B-mode map from lensing

Error on r proportional to B-mode lens power

$$\sigma(r) \propto \sum_{l} \sqrt{\frac{2}{(2l+1)f_{\rm sky}}} (C_l^{\rm BB,lens} + N_l^{\rm BB})$$

- With map of LSS and CMB E-mode map, can estimate CMB B-mode map from lensing
 - Need range of scales (100 < 1 < 1000), including small-scales as they contribute to large-scale
 B-mode power

AdvACT will survey 50% of sky

AdvACT will survey 50% of sky

have 5 frequency channels

AdvACT will survey 50% of sky

have 5 frequency channels

have a HWP to get to ell ~ 50

AdvACT will survey 50% of sky

have 5 frequency channels

have a HWP to get to ell ~ 50

have small-scale CMB to delens

CMB-S4: Inflation Forecast

Outline

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing
- CMB Halo Lensing/CMB Lensing Cross-Correlations as Probes of Dark Energy
- Conclusion

CMB Lensing on Small Scales

Unlensed CMB

Noiseless unlensed CMB sim

20' x 20' patch

Mostly gradient

CMB Lensing on Small Scales

Lensed CMB

Noiseless lensed CMB sim

20' x 20' patch

Lensed by $M_{180} = 2 \times 10^{15} \text{ Msun}$

Lensing signal on Mpc / arcmin scales

CMB Lensing on Small Scales

Difference of lensed and unlensed CMB

20' x 20' patch

Characteristic dipole along the direction of gradient

Dipole signal is of the order of ~I-I0uK

Difference Map

ACTPol First Season Maps

Stacked ~12,000 CMASS Galaxies

Stacked ~12,000 CMASS Galaxies

Galaxies from SDSS-III/BOSS DR10

CMASS ("constant mass")
galaxies have similar
selection as LRGs

Stacked ~12,000 CMASS Galaxies

Galaxies from SDSS-III/BOSS DR10

CMASS ("constant mass")
galaxies have similar
selection as LRGs

Galaxies chosen because have optical weak lensing mass estimates

Weak lensing using CFHTLS

$$M_{200} = (2.3 \pm 0.1) \times 10^{13} h^{-1} M_{\odot}$$

ACTPol: First Detection of Lensing of the CMB by Dark Matter Halos

Madhavacheril, Sehgal, et. al., PRL, 114, 2015

We detect halo lensing from 12,000 stacked CMASS galaxies at S/N of 3.2 sigma

Best fit: $M_{200} = (2.0 \pm 0.7) \times 10^{13} h^{-1} M_{\odot}$ and $c_{200} = 5.4 \pm 0.8$

AdvACT: Dark Energy Forecast

AdvACT: Dark Energy Forecast

CMB Lens Cross-Correlations

Das et al, 2013, "Can CMB Lensing Help Cosmic Shear Surveys"

CMB Lens Cross-Correlations

Das et al, 2013, "Can CMB Lensing Help Cosmic Shear Surveys"

Outline

- Intro to ACTPol, AdvACT, CMB-S4
- Neutrino Mass from CMB Lensing
- Primordial Gravity Waves and Delensing
- CMB Halo Lensing/CMB Lensing Cross-Correlations as Probes of Dark Energy
- Conclusion

May detect neutrino mass with CMB lensing

- May detect neutrino mass with CMB lensing
- Probe r ~ 0.01 with AdvACT and r~0.001 with CMB-S4

- May detect neutrino mass with CMB lensing
- Probe r ~ 0.01 with AdvACT and r~0.001 with CMB-S4
- Explore Dark Energy with CMB in many ways including CMB halo lensing and CMB lens crosscorrelations with redshift and shear surveys

- May detect neutrino mass with CMB lensing
- Probe r ~ 0.01 with AdvACT and r~0.001 with CMB-S4
- Explore Dark Energy with CMB in many ways including CMB halo lensing and CMB lens crosscorrelations with redshift and shear surveys
- Future CMB surveys are important complement to large-scale structure surveys